

THE COMBINED EFFECT OF DEFICIT IRRIGATION AND THE TECHNOLOGY OF **KYMINASI PLANT BOOSTER ON MAIZE**

TRIAL REPORT & FINAL ANALYSIS

Presented by : HIFNI Amine

Supervised by : Pr. ABOUABDILLAH Aziz

Commented (in red) by: Ozzie Freedom, Harvest Harmonics Corp, Dec. 2024

ENA Meknès – École Nationale d'Agriculture de Meknès – National School of Agriculture, Morocco . June 2024

Outline

03. Conclusion 04. Recommendations 05. Glossary

01. Materials and methods

02. Results and Discussion

Materiels and methods

The experimental plot

	Meknès, Morocco
Plot area	0.33 Ha
Spacement	0.7*0,12 m
Seeding rate	100000 plants/Ha
Seedling Date	March 22, 2024
Harvesting Date	July 22, 2024

Results

The experimental plot

Treatment Number	Description
T1	100% ETC [*] application without Kyminasi
T2	100% ETC application + Kyminasi
T3	80% ETC application without Kyminasi
T4	80% ETC application + Kyminasi
T5	60% ETC application without Kyminasi
T6	60% ETC application + Kyminasi

* ETc: Crop Evapotranspiration

Granulometric composition and chemical parameters of the soil

Parameters	Value
Sand (%)	16.1
Silt (%)	36.3
Clay (%)	47.6
рН	7.74
Total limestone (%)	12.8
Active limestone (%)	6.3

STPV

Results

Irrigation management

Extract of the irrigation program for the 100% ETc control treatment

DATES	Mois	Tmin	Tmax	Tmean	GDUs	%Р	ETO (mm)	Précipitat ions (mm)	Réserve (mm)	D.A.S	Stage	Кс	ETC (mm)	NB apports réel
29-avr24	4	6,89	15,26	13,075	369	0,29	1,70	6,4	13,86	37	Dev.	0,80	1,36	0
30-avr24	4	5,5	17,28	13,39	374	0,29	2,10	0,0	17,62	38	Dev.	0,80	1,68	0
1-mai-24	5	5,78	19,71	14,745	381	0,31	2,70	0,0	15,94	39	Dev.	0,80	2,16	0
2-mai-24	5	8,19	18,82	15,505	389	0,31	2,40	0,0	13,78	40	Dev.	0,80	1,92	0
3-mai-24	5	4,74	24,81	16,775	398	0,31	3,90	0,0	11,86	41	Dev.	0,80	3,12	0
4-mai-24	5	7,36	26,52	18,94	409	0,31	4,50	0,0	8,74	42	Dev.	0,80	3,60	0
5-mai-24	5	7,88	26,19	19,035	420	0,31	4,10	0,0	5,14	43	Dev.	0,80	3,28	0
6-mai-24	5	12,24	23,77	20,005	432	0,31	3,10	0,0	1,86	44	Dev.	0,80	2,48	0
7-mai-24	5	8,67	29,02	20,845	445	0,31	4,60	0,0	0,00	45	Dev.	0,80	3,68	2
8-mai-24	5	13,71	32,68	25,195	461	0,31	4,90	0,0	0,00	46	Dev.	0,80	3,92	2
9-mai-24	5	12,29	31,92	24,105	476	0,31	4,40	0,0	0,00	47	Dev.	1,00	4,40	3
10-mai-24	5	15,2	32,92	26,06	493	0,31	4,30	0,0	0,00	48	Dev.	1,00	4,30	2
11-mai-24	5	15,89	30,35	25,12	510	0,31	3,90	0,0	0,00	49	Dev.	1,00	3,90	2
12-mai-24	5	15,1	26,29	22,695	524	0,31	3,20	0,0	0,00	50	Dev.	1,00	3,20	2
13-mai-24	5	13,62	25,92	21,77	538	0,31	3,40	0,0	0,00	51	Dev.	1,00	3,40	2

Water requirements

 $ETc = Kc^*ETo$

Readily Available Water (RAW) RAW = f *(HFC – HPWP) * Rd * PHs

Results

IRRIGATION				
f	0,05			
Psh (%)	80,0%			
RFU (mm)	52			
DNM (mm)	2,07			

Maize	
Stage	Kc
Dev.	0,80
Init.	0,30
Late	0,60
Mid.	1,20
Fao 56	

Irrigation management

The water quantity (delivered to the plants) per hectare in each treatment

Results

Growth and development parameters

Collar diameter

Results

Conclusion and recommendations

Height

Eco-physiological parameters

Results

Conclusion and recommendations

Stomatal conductance

Destructive measurement

Results

Conclusion and recommendations

Yield

Biochemical analysis

Proline content

Material and methods

Data analysis and treatment

The data was analysed and treated with two important softwares which are

Results

Results and discussion

Height evolution

Results

Conclusion and recommendations

AT GROWTH STAGES: With 40% water stress and Kyminasi, the maize plants were 12.8% taller at 80 DAS and 8.5% taller at 90-110 DAS

K1: with Kyminasi KO: without Kyminasi

K1: with Kyminasi K0: without Kyminasi

Conclusion and recommendations

AT HARVEST: Corn height <u>nearly</u> doubled with 40% water stress and Kyminasi

DI	*
К	n.s
K*DI	n.s

K1: with Kyminasi K0: without Kyminasi

Results

Conclusion and recommendations

AT GROWTH STAGES: With 40% water stress and Kyminasi, collar diameter was 7.4% larger at 80 DAS and 8% larger at 95 DAS

Results

Conclusion and recommendations

*

*

n.s

Material and methods

Chlorophyll index evolution

50

а

AT GROWTH STAGES: Between 85 DAS and 110 DAS, chlorophyll *levels were higher than Control with 20%* water stress and Kyminasi а а а а

K1: with Kyminasi K0: without Kyminasi

Results

N.S.E	DI
N.S.E	К
N.S.E	K*DI

K1: with Kyminasi K0: without Kyminasi

DI	*
К	n.s
K*DI	n.s

K1: with Kyminasi K0: without Kyminasi

Conclusion and recommendations

Moctar, 2023. Assessment of Combined Effect of Hydrogels and Continuous Deficit Irrigation in Maize (Zea mays L.): plant response and eco-toxicological characterization.

Ali, R., Khan, M., & Ahmed, Z. (2017). Proline accumulation as a response to drought stress in maize. Journal of Plant Physiology, 56(3), 218-225.

DI	*
К	n.s
K*DI	n.s

K1: with Kyminasi K0: without Kyminasi

Results

DI	n.s
К	*
K*DI	n.s

Material and methods

Results

Agronomic Water Use Efficiency

Treatment	Grain yield	Biomass yield	Water applied	WUE* Grain	WUE Biomass
	(Tons/hectare)	(Tons/hectare)	(m3/ha)	$(\text{kg} \cdot \text{m}^{-3})$	$(\text{kg} \cdot \text{m}^{-3})$
T1 (100% +	13.61	88.25	4463.60	3.05ab	19.77b
K0)					
T2 (100% +	12.50	93.53	4463.60	2.80ab	20.95b
K1)					
T3 (80% +	10.74	88.01	3570.88	3.01a	24.65a
K0)					
T4 (80% +	10.84	80.89	3570.88	3.04a	22.65a
K1)					
T5 (60% +	7.27	54.97	2678.16	2.71b	20.53a
K0)					
T6 (60% +	7.58	69.87	2678.16	2.83b	26.09a
K1)					

Conclusion and recommendations

DI	*
К	n.s
K*DI	*

* WUE: Water Use Efficiency

Economic Water Use Efficiency of Biomass Production

Treatment	Estimated	Selling price	Applied	Cost of	Amortized	Total	Profit by	EWUE**b
	biomass	(MAD*)	irrigation	applied	cost of	expenses	biomass	(MAD.m-3)
	yield per		water	irrigation	Kyminasi	(MAD)	(MAD)	
	hectare		(m3/ha)	water	(MAD.ha-1			
				(MAD)	.year-1)			
T1 (100% +	88.25	114725.325	4463.6	5356.32	0.00	5356.32	109369.01	24.50b
K0)								
T2 (100% +	93.53	121587.375	4463.6	5356.32	5750.00	11106.32	110481.06	24.75b
K1)	+6%							+6%
T3 (80% +	88.01	114418.2	3570.88	4285.056	0.00	4285.06	110133.14	30.84a
K0)								
T4 (80% +	80.89	105162.2	3570.88	4285.056	5750.00	10035.06	95127.14	26.64a
K1)								
T5 (60% +	54.97	71460.025	2678.16	3213.792	0.00	3213.79	68246.23	25.48a
K0)								
T6 (60% +	69,87	90834,25	2678.16	3213.792	5750.00	8963.79	81870.46	30.57a
K1)	+27.1%							+27.1%

Results

Conclusion and recommendations

DI	*
К	n.s
K*DI	*

* MAD: Moroccan Dirham ** EWUE: Economical Water Use Efficiency

Recommendations

Material and methods Introduction

Maintaining irrigation levels at 80% ETc was found to provide yields that were close to those of 100% ETc,

Material and methods

Parameters

Material and methods

Cover cropping

Material and methods

and limitations.

Conclusion and recommendations

Conduct additional studies in Kyminasi, perhaps with different crop types or under varying environmental conditions, and under higher strss, to fully understand its benefits

Harvest Harmonics' Analysis

Professor Aziz Abouabdillah and graduate student Amine Hifni of ENA university in Meknes, Morocco conducted an interesting comparative trial focusing on the effect of Kyminasi Plants Crop Booster (KPCB) on maize growth and yield with various levels of water stress: 0%, 20%, and 40% less watering; in the study: ETc 100%, ETc 80%, and ETc 60%, respectively (ETc: Crop Evapotranspiration).

Our conclusions:

- During the growth stages, with KPCB and 40% water stress, the maize \checkmark plants were **12.8% taller** at 80 DAS and **8.5% taller** at 90-110 DAS. In parallel, collar diameter was 7.4% larger at 80 DAS and 8% larger at 95 DAS.
- ✓ At harvest, collar diameter was 17.6% larger with KPCB and 40% water stress, which was the largest KPCB boost compared to 20% and 0% water stress treatments.
- Between 85 DAS and 110 DAS, chlorophyll levels were higher than Control with KPCB and 20% water stress.

Harvest Harmonics' Analysis (continued)

- ✓ Under 40% water stress, **yield gain** was 27.1% with KPCB vs. Control, compared to 6% gain with KPCB alone (no water stress). Additionally, between all the six treatments, **proline** content was the highest with KPCB and 40% water stress, indicating a **boost in maize drought**, water stress, and salinity stress resilience.
- ✓ Yield in tons per hectare was 27.1% higher with KPCB and 40% water stress, vs. 6% higher yield with KPCB and no water stress.
- ✓ Grain Yield per hectare was 4.3% higher with KPCB and 40% water stress. Additionally, the researchers found 4.4% HIGHER GRAIN DENSITY with KPCB and 40% water stress.
- ✓ The researchers calculated that profitability of biomass production vs. water use was 1% better with KPCB without water reduction. In contrast, when using KPCB with 40% water stress the **profitability** of biomass production was boosted by 20%. The Agronomic Water Use Efficiency was 20% better with KPCB and 40% water stress, vs. 6% better with KPCB and no water stress.
- ✓ We highly recommend further study into water stress boost with KPCB, using our POPS Profitability Optimization for Sustainability, to find the precise "Sweet spot" of maize sustainability in Morocco.

Glossary

- D.A.S, DAS: Days After Seeding
- **DNM: Readily Available Water**
- ENA: in French, École Nationale d'Agriculture National School of Agriculture, in Meknès, Morocco
- ETc: Crop Evapotranspiration the amount of water a crop needs.
- ETo: The reference evapotranspiration, which is the evapotranspiration of a reference crop.
- **EWUE: Economical Water Use Efficiency**
- f: crop-specific coefficient •
- FAO 56: the standard method for computing water requirement of irrigated crops [Allen et al, 1988, https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf]
- FC: Field Capacity ۲
- **GDU:** Growing Degree units
- Hcf: field capacity
- Hpfp (H_{pfp}): permanent wilting point humidity

- KO: no Kyminasi
- K1: with Kyminasi
- MAD: Moroccan Dirham \bullet
- n.s: no significant effect •
- NSE: No Significant Effect
- NB: number •

- Rd: Root depth •
- of water)
- Celsius)
- WUE: Water Use Efficiency
- *: there is a significant effect •

Kc: The crop coefficient, which is a value that takes into account the crop's attributes and how it's managed.

Psh (Phs): % of soil humidity

PWP: Permanent Wilting Point

RFU: readily usable reserve (in this study, in millimeters

T (Tmin, Tmax): temperature (in this study, in degrees